第一百一十章 IMO第一场(1/2)
小÷说◎网 】,♂小÷说◎网 】,
如果在华山论剑上,郭靖看到欧阳锋使街头混混打架用的王八拳会作何感想?他一定会觉得这是欧阳锋在扮猪吃老虎——妥妥的有诈啊!
而此时的张伟就面临着这种情况——在imo赛场上遇见高中课外作业级数的题目,这让张伟不得不怀疑其中有诈啊!
抱着怀疑的态度,张伟又把题审了一遍,得出的结论还是——太特么简单了!
再审一遍——还是很简单啊!
然后张伟就迷茫了。
他转头瞟了一眼隔壁桌的黑人兄弟——看黑人兄弟对着第一题抓耳挠腮的模样,这题应该是有难度的吧?
“难道是发错卷子了?”虽然这种可能性几乎没有,但比起让他相信imo的考题就是特么这么简单,张伟倒更愿意相信自己是真的拿错卷子了!
纠结了半天,张伟最后还是没有选择做题,而是举手向监考老师示意了。
等监考老师过来,张伟吵着一口london英语向美国监考老师问到:“老师,请你帮我看一下,我是卷子是不是发错了。”
结果监考老师根本就不看张伟的卷子,直接回答道:“各支队伍的考卷都是由你们自己的领队翻译的,如果真的有错误,那也是你们领队翻译的错误。”
得了,直接把锅甩到刘干事头上了,但问题是现在也没办法拿着卷子去向刘干事求证啊!
“希望是我想多了吧”如今这状况,张伟也只能这样安慰自己了。
再次把第一题从头到尾逐字逐句的审了一遍,在确定这一题就是特么这么简单之后,张伟无奈的开始下笔作答了:
“设两圆圆心为o,过o做o推理可知:
bc2ca2ab2
=bc2(2pa2)
=bc22bp22pa2
=42-4t22pa2
=6r22r2
故表达式取值的集合为{6r22r2}”
搞定第一问,用时不到十分钟!但是你以为光只有第一问简单吗?不,第二问更简单!
“过a作直线平行于cb,交大圆周于d及f两点,易见pbfa为一矩形,因此线段ab的中点也就是线段pf的中点。当b在大圆周上变动一周时,f也在大圆周上变动一周。这说明,轨迹是以线段op的中心为圆心,以r/2为半径的一个圆周。”
第二问用时比第一问更短!
而做完整个第一题的耗时,特么还没有张伟刚才用来“怀疑人生”的时间长!
抱着忐忑的心情和怀疑的心态,张伟继续做第二题——第二题是道数论。
张伟记得单飞曾经说过,在高中奥数比赛中,最难的题目类型就是数论,其上限极高,可以难的让人怀疑智商放弃人生。
不过如今摆在张伟面前的这道数论题,很显然浪费了这种难度上限。
比第一题难——但也就是仅此而已。
虽然觉得题目太简单这种心态听起来挺贱的,但张伟就是忍不住啊!
第二题比第一题难一些,这次张伟用了二十多分钟。
然后是最后的压轴题,是道函数题。
将题目审了一遍——嗯,终于有点难度了,而且难度较之前面两题,一下子拔得非常高!
“这才有点奥数竞赛的样子嘛!”审了一遍题没找到思路,但这下反而让张伟安心了不少。
难——这才是奥数竞赛应该有的样子不是么?
摆正姿势摆正心态,张伟开始对第三题进行深入的审题:
n为正整数集在n上定义函数如下:
(1)=1,=3,且对n∈n有
=,
=2-,
=3-2
问:有多少个n∈n,且n≤1998使得(n)=n
这题给出的条件还是非常多的,但是数学这东西,有时候已知的条件多,可并不见得是好事。
排除纯粹作为无用干扰项的可能,已知条件越多,通常意味着接下来的运算或者推理过程越复杂。
这一题就是个典型。
张伟没有上来就找公理定律什么的,他觉得这一套在这里行不通。
他通过题目已知的几个函数等式,先列举出了一段结果,即在给出n的数值的情况下,算出对应的数值:
n1234567891011121314151617
113153719513311715117
如果换了普通人,看到这张表恐怕会更加懵逼,因为这看起来只是两串杂乱的、毫无规律的数字。
但是这两串数值真的是毫无规律吗?
数学有一种独特的美,这种美叫做“规律”;而数学的美往往隐藏的如此之深,让一般人根本无从发现。
很多人因为发现不了数学之美而厌弃数学,而也有极少数的人长了一双善于发现数学之美的眼睛,他们因此而爱上了数学!
张伟不确定自己有没有爱上数学,但他很确定自己有一双发现数学之美的眼睛:
2k=1,2k-1=2k-1,2k1=2k1
没有公式,没有定理,只能用一双眼睛,用数学归纳法来找到这种规律:的值是将n用二进制形式表示,再将他反向得到的二进制数值(例如11=1011,(11)=1011=13)。
引入二进制后,使张伟解答这道题找到了可能。
得出的规律,再在此种规律下考虑、、的情形。
假设论证的过程是复杂的,但再复杂的推理计算,也必然要遵循数学的规律,掌握了这些规律,在数学的赛场上你就是神!
由=可知2k=1成立;
假设n=41=与猜想吻合。
假设n=43=与猜想吻合。
故证明猜想。
第1页完,继续看下一页